EDL Engineering Constraints Mars 2020 1st Landing Site Workshop Allen Chen CEDL Design Team May 14, 2014 Jet Propulsion Laboratory, California Institute of Technology Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. #### Overview - Given the "re-flight" nature of Mars 2020, the EDL engineering constraints unsurprisingly look a lot like MSL's engineering constraints with a few exceptions - The 2020 opportunity enables higher landing site elevations than were possible with MSL - Engineering constraints are a discretized set of thresholds - Some of these are firmer than others - Constraints are interconnected - We've got a better handle on this now after MSL - Potential enhancements to EDL are being considered: Range Trigger and TRN - Improves landing site access - Will affect engineering constraints - This primer refreshes the MSL constraints for Mars 2020 #### EDL in the 2020 Opportunity - Pressure cycle very favorable for 2020 - Mars orbit eccentricity transfers CO₂ from polar caps to atmosphere - Atmosphere significantly more dense than for MSL landing - Low risk of dust events - More density = capability to land safely at higher elevations - 2020 atmosphere provides significant "no cost" improvements to landing elevation for same landed mass - Higher altitude capability - More propellant margin #### **Baseline Engineering Constraints** - Our understanding of MSL capabilities has matured - Mars 2020 baseline EDL engineering constraints reflect our best knowledge of the MSL as-flown capability translated to the 2020 opportunity - 2020 opportunity improves altitude capability; other constraints unchanged from MSL as flown - Constraints will look very similar to original MSL constraints with a few exceptions - Following slide summarizes the Mars 2020 baseline constraints ## **EDL Constraint Summary** | | MSL Capability
(in 2011 opportunity) | Mars 2020 Baseline | Notes | | | | |---|---|--|--|--|--|--| | Ellipse Size
(major x minor) | 25 km | n x 20 km | No change from MSL. | | | | | Site Elevation | Up to -1 km MOLA | Up to +0.5 km MOLA | 2020 opportunity improves elevation capability. | | | | | Latitude | 30°S to 30°N | | No change from MSL. | | | | | Approximate Ellipse Major
Axis Azimuth | N/A | 81°- 112° | | | | | | Rocks | ≤ 0.5% chance of rock > 0.55 m high in belly pan area | | No change from MSL. | | | | | | | -8% rock abundance gher for portions of ellipse) | Approximate MSL test/analyzed capability. Portions of MSL landing site candidates had local CFA of ~30%. | | | | | Rover Scale Slopes | ≤ 30° at 2 m length scales | | Increased from original MSL specifications; within as flown capability. | | | | | Allowable Hazardous Areas in Ellipse | | N/A | | | | | | Allowable Relief (5 m to 1000 m Baseline) | ≤ 100 |) m relief | Increased from original MSL specifications; within as flown capability | | | | | Radar Reflectivity | Ka-band reflective | | No change from MSL. | | | | | No Thick Dust Deposits | >100 J m ⁻² s ^{-0.5} K | ⁻¹ and albedo < 0.25 | No change from MSL. | | | | | Load Bearing Surface | | ring to prevent sinkage during chdown | No change from MSL. | | | | | Atmosphere | • | al and 20 m/s vertical wind
ertainty | No change from MSL. | | | | #### **Potential Enhancements** - Mars 2020 is studying two potential EDL enhancements, as discussed in the SDT report - Range trigger: improves landing precision (smaller landing error ellipse) - TRN: allows some hazards in the landing ellipse - Neither option is currently baselined - Looking for feedback on the value/necessity of each - Does either approach (or their combination) allow access to a high-value site that is inaccessible with the baseline capability? - Does either approach (or their combination) change a site accessible only by "go to" into a "land on" candidate? - Will look at landing hazards presented by landing site candidates - Ongoing studies are giving us a better understanding of the costs and potential landing site access benefits #### Range Trigger - Trigger parachute deploy based on the vehicle reaching a navigated <u>range</u> rather than a navigated <u>velocity</u> - MSL baseline: deploy the parachute based on reaching a specified navigated velocity (a.k.a. "velocity trigger") - Range trigger: deploy on range within safe velocity limits (sometimes called "velocity constrained range trigger") - To successfully execute guided entry, the vehicle already propagates its position from the pre-entry nav state - MSL "knew" it was long of the center of the ellipse when it deployed the parachute, but couldn't do anything about it - No new hardware is required only a simple EDL flight software change #### Improves Landing Precision Mars 2020 Project - Using range trigger can significantly shrink the landing ellipse - ~40% reduction in ellipse area - ~8 km reduction in ellipse length - Magnitude of the improvement depends on landing site wind uncertainty and site elevation - Given conservative engineering wind constraints, willing to sign up for 16 km x 14 km ellipse - Best estimate: 12 x 11 km with MSL Galelike winds - Baseline: 25 km x 20 km - Maximum site elevation with range trigger: 0.0 km MOLA - Key benefits: - Makes previously inaccessible landing sites accessible - Could save ~1 Earth year of driving - Makes the TRN job easier Curiosity Best Estimate Landing Location -4.59° Latitude, 137.44° Longitude #### TRN for Mars 2020 Mars 2020 Project #### Terrain Relative Navigation - Works by taking images during parachute descent and matching them to an onboard map - Uses a dedicated compute element, camera, and (maybe) an inertial measurement unit - Yields a position solution - Performs terrain relative navigation while the spacecraft is priming the descent engines - Executed by the Lander Vision System (LVS) #### **Multi-Point Divert** - Uses position solution and list of safe landing locations to select a landing target - Augments original MSL backshell avoidance divert (requires slightly higher backshell separation altitude) - Lives within MSL fuel and control authority constraints # Preliminary Landing Site Access Results with TRN | Partial List of SDT
Suggested
Landing Sites | Baseline
(No TRN) | TRN with
40 m
Accuracy | TRN with
60 m
Accuracy | Comments | |---|----------------------|------------------------------|------------------------------|---| | NE Syrtis Major | 87.0% | 99.5% | 98.6% | | | E Margaritifer | 87.8% | 98.6% | 97.1% | | | Nili Fossae* | 95.5% | 99.7% | 99.4% | | | Ismenius Cavus | 81.6% | 94.2% | 92.3% | Significant improvement likely w/ range trigger ellipse | | Holden Crater Land-On Target* | 96.1% | 99.8% | 99.6% | See next slide | ^{*} Assumes a 14x16 km range trigger ellipse at touchdown - TRN yields significant improvement in likelihood of safe landing - Maximum site elevation for TRN capability: approximately -1.0 km MOLA - Magnitude of improvement higher with better localization accuracy - Accuracy worse than 60 m greatly diminishes value of TRN - For comparison: At time of selection, MSL final four landing site candidates all ~99% safe with respect to landing hazards #### TRN and Go To vs. Land On - Used Holden (MSL landing site finalist) to investigate converting a "go to" site to a "land on" site with TRN - At Holden, TRN allows the ellipse to be moved down onto the go-to target - Minimal increase in terrain failure rate - ~12 km shift in center of ellipse - May not work at all sites, but worth exploring for 2020 candidates ### **EDL Constraint Summary** | | | | - | X | | |---|--|---|--|--|--| | | MSL Capability (in 2011 opp.) | M2020
Baseline | M2020 with Range Trigger | M2020 with
Range Trigger + TRN | Notes | | Ellipse Size
(major x minor) | 25 km x 20 km | 25 km x 20 km | | 16 km x 14 km | Range trigger ellipse may be as small as 13 km x 7 km | | Site Elevation | Up to -1 km
MOLA | Up to +0.5 km
MOLA | Up to +0.0 km
MOLA | Up to -1.0 km MOLA | 2020 opportunity improves capability | | Latitude | | 3 | | | | | Approximate Ellipse
Major Axis Azimuth | | | | | | | Rocks | 5 | ≤ 0.55 m in height | | | | | David O and latit | ≤ 0.5% chance of rock > 0.55 m high in belly pan | | | Exempt from rock/rover scale | | | Rock Cumulative
Fractional Area | | oonds to ~8% rock
antly higher for por | | slope constraints in hazardous areas. | Approximate MSL test/analyzed capability. Portions of MSL landing site candidates had local CFA of | | | ≤ 30° at 2 m length scales | | | Constraints apply in "safe" areas. | ~30%. | | Rover Scale Slopes | | | | | Increased from original MSL specifications; within as flown capability | | Allowable
Hazardous Areas in
Ellipse | N/A | | | ≤ 110 m radius Separated from other hazardous areas by ≥ 120 m | New capability only provided by terrain relative navigation | | Allowable Relief
(5 m to 1000 m
Baseline) | | | Increased from original MSL specifications; within as flown capability | | | | Radar Reflectivity | | Ka | No change from MSL. | | | | No Thick Dust
Deposits | _ | >100 J m ⁻² s | No change from MSL. | | | | Load Bearing
Surface | Surface | must be load beari | No change from MSL. | | | | Atmosphere | Up to | 25 m/s horizontal | No change from MSL. | | | #### Conclusions - Without enhancements, EDL engineering constraints are almost identical to MSL constraints - Landing site elevation capability improved by 2020 opportunity - But all other things being equal, lower is generally better - Preliminary Mars Program future mission studies have not imposed any specific landing site constraints on Mars 2020 - Enhancements are feasible and provide significant landing site access improvement, but the project won't pursue them without direction - Even if enhancements become part of the baseline, will want to carry at least one "safe haven" site that satisfies MSL-like constraints